Local Search Algorithms
Hill‐climbing Search
- aka Greedy local search
- It terminates until it reaches a peak where no neighbors w/ better values
- Does not keep a search tree; keep only the current node data
Local Beam Search
- Like Hill‐climbing, but
keep k best at each level, not just one
- Unlike k hill‐climbing w/ random restarts
Simulated Annealing
Hill‐climbing不允許downhill,因此屬於incomplete;uniformly隨機挑選successor屬於complete,但是速度很慢。因此使用此折衷的演算法
- If the move improves, take it. Otherwise, accept the bad move with probability
Let T[1], T[2], …, T[N]=0 be temperature schedule;
Current <‐ initial state;
For i = 1 to N do:
T <‐ T[i];
Next <‐ Random next state;
ΔVal <‐ Value(Next) – Value(Current);
If ΔVal >= 0,
Current <‐ Next,
Else Current <‐ Next w/ probability e^(ΔVal/T)